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Mechanisms of interactive specialization and emergence of
functional brain circuits supporting cognitive development in
children
Christian Battista1, Tanya M. Evans1, Tricia J. Ngoon1, Tianwen Chen1, Lang Chen1, John Kochalka1 and Vinod Menon1,2,3,4

Cognitive development is thought to depend on the refinement and specialization of functional circuits over time, yet little is
known about how this process unfolds over the course of childhood. Here we investigated growth trajectories of functional brain
circuits and tested an interactive specialization model of neurocognitive development which posits that the refinement of task-
related functional networks is driven by a shared history of co-activation between cortical regions. We tested this model in a
longitudinal cohort of 30 children with behavioral and task-related functional brain imaging data at multiple time points spanning
childhood and adolescence, focusing on the maturation of parietal circuits associated with numerical problem solving and learning.
Hierarchical linear modeling revealed selective strengthening as well as weakening of functional brain circuits. Connectivity
between parietal and prefrontal cortex decreased over time, while connectivity within posterior brain regions, including intra-
hemispheric and inter-hemispheric parietal connectivity, as well as parietal connectivity with ventral temporal occipital cortex
regions implicated in quantity manipulation and numerical symbol recognition, increased over time. Our study provides insights
into the longitudinal maturation of functional circuits in the human brain and the mechanisms by which interactive specialization
shapes children’s cognitive development and learning.
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INTRODUCTION
The human brain undergoes protracted developmental changes
resulting in mature functional brain networks that engender
sophisticated cognitive, problem solving, and learning abilities.1,2

These complex cognitive abilities in humans have been hypothe-
sized to be supported by specialized and inter-connected
functional networks that undergo protracted developmental
changes in their organization between childhood and adulthood.3

It is now increasingly clear that understanding this requires
knowledge of how dynamic interactions between distributed
brain regions mature over time.4–6 A critical barrier to progress is
the lack of task-based functional brain imaging, cognitive and
behavioral data at multiple time points in the same children as
they are acquiring such skills, precluding precise quantitative
analysis of developmental trajectories and formation of refined
functional circuits. Here, we investigate longitudinal develop-
mental trajectories over a 6-year period spanning childhood to
early adolescence, and elucidate brain mechanisms underlying
specialization of functional circuits and its relation to changes in
regional brain response.
The interactive specialization (IS) model provides a useful

theoretical framework for investigating the formation of specia-
lized and inter-connected functional networks over time.1,2 IS
posits that cognitive development depends on selective strength-
ening of inter-regional connections over time, giving rise to

specialized functional systems.1,7,8 More generally, functional brain
maturation also involves systems-level pruning, characterized by
selective strengthening of some of functional brain circuits and
weakening of others.6 Whether IS and the formation of specialized
functional circuits involves selective strengthening and weakening
of functional circuits is not known.
Despite its conceptual strengths, there have been few critical

tests of IS, and its instantiation at the level of functional brain
circuits remains unexplored. Surprisingly, much of the formulation
of the IS model to date has been based on observations of cross-
sectional changes in regional brain responses rather than inter-
regional interactions and plasticity of functional brain circuits.9–12

Although longitudinal studies are the gold standard for investigat-
ing cognitive development in children,13–15 the vast majority of
functional brain imaging studies have been based on cross-
sectional fMRI (functional magnetic resonance imaging) data. In
order to make direct links to cognition and test-specific
hypotheses arising from the IS model of brain development,
longitudinal task-based fMRI studies are critically needed. There
have only been six longitudinal developmental fMRI studies of
task-related activation,16–20 with only one study examining
changes in brain connectivity.21 Furthermore, extant studies of
growth trajectories using longitudinal designs have focused on
regional changes in brain response.20,22 Critically, no previous
studies, either in the perceptual or the cognitive domains, have
examined how specialized functional circuits emerge in children
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over time, and no studies have probed longitudinal changes in
task-related functional circuits, which is necessary for identifying
mechanisms underlying human neurocognitive development.
Thus, it remains unclear how specialized functional circuits
emerge from the coordination of multiple brain regions over
development.
To address these gaps, we utilized a longitudinal design with

multi-time point sampling to investigate the maturation of
functional brain circuits supporting cognitive development and
to probe the mechanisms underlying IS in the context of a
numerical problem solving task. A uniquely human cognitive skill,
symbolic arithmetic is especially relevant for testing the IS
framework given its importance in children’s cognitive and
academic skill development.23–25 Furthermore, this domain
involves distributed brain areas whose engagement changes
dynamically with skill acquisition.26

Core functional systems involved in symbolic arithmetic include
a system for numerical quantity representation anchored in the
intraparietal sulcus (IPS), and a visual number form processing
system anchored in ventrotemporal occipital cortex (VTOC).
Quantity-selective neurons have been found in non-human
primate IPS,27 and fMRI adaptation paradigms have suggested
that the human IPS is sensitive to quantity across stimulus
formats.28–30 Similarly, specialization for visually presented numer-
als has been detected in the VTOC.31–34 Together, the IPS and the
VTOC facilitate the efficient manipulation of numerical quantity
necessary for numerical problem solving.35 In addition, frontal
systems anchored in the insula, dorsolateral and ventrolateral
prefrontal cortex (PFC) support working memory and other
cognitive control functions important for effortful problem
solving.26,36 Cross-sectional studies have suggested that IPS and
VTOC activity increase with age, while PFC activity decreases with
age, reflecting decreasing demands on the working memory
system accompanied by increasing utilization of mature problem
solving abilities.37–39 However, how interactions between these
systems change over the course of development and which
factors drive these changes are currently unknown.
We investigated developmental changes in brain connectivity

in a longitudinal sample of 30 children and adolescents with task-
related fMRI and cognitive data from multiple time points
spanning a 6-year interval from ages 7 to 14 (Fig. 1). To better
understand the mechanisms underlying IS, we examined whether
longitudinal developmental changes would be associated with: (1)
selective strengthening of specialized functional circuits, (2)
selective weakening of PFC circuits that scaffold development,
and (3) increases and decreases in activity within brain areas that
show targeted changes in connectivity.1,6 Based on extensive
evidence for its prominent role in quantity representation and
manipulation,35,40,41 we focused on IPS connectivity to character-
ize longitudinal developmental changes in functional brain circuits
and test-specific hypotheses about the mechanisms underlying IS.
Specifically, we hypothesized that over time the IPS would show:
(1) increased effective connectivity within local parietal cortical
circuits; (2) increased connectivity with VTOC regions involved in
basic number form processing; (3) decreased connectivity with
PFC cognitive control and working memory systems. Finally, we
hypothesized that this pattern of connectivity would be accom-
panied by selective increases in regional parietal and VTOC
activity, and decreases in PFC activity, identifying a tight link
between the formation of specialized large-scale brain circuits and
selective changes in regional task-related activation over time.
We explicitly tested these predictions by constructing hierarch-

ical linear models (HLMs) of developmental change in brain
connectivity. HLM is ideally suited for modeling longitudinal data
because it allows for the nesting of individual data, effectively
accounting for individual differences.42 HLMs are also flexible in
that they do not require that time-points be matched between
children, making them a preferred choice to address the

constraints and inherent difficulties of acquiring longitudinal data
at multiple time points in children.42

RESULTS
Longitudinal changes in age-normed math abilities
We first conducted an HLM analysis to characterize the profile of
longitudinal changes in standardized measures of individual math
abilities, assessed using the WIAT-II Numerical Operations
(NumOps) subtest.43 By comparing a model assuming no change
over age (no-change base model) and a single-factor model with
age-related change in math ability (age-related change model;
details in Methods), we found that the base model fitted the data
better for NumOps, suggesting that age-normed measures of
math abilities remained stable over time and arithmetic skill in our
sample improved at a typical rate (Table 1).

Longitudinal changes in fMRI arithmetic task behavior
Next, we next used the same HLM analysis procedure (i.e.,
comparing the no-change base model and age-related change
model) to characterize longitudinal changes in behavioral
performance on the arithmetic task performed during fMRI
acquisition. In this task, children indicated via button press
whether arithmetic problems presented on the screen were
correct (e.g., 2 + 4 = 6) or incorrect (e.g., 4 + 2 = 7). In contrast to
the stability of NumOps, an age-normed math ability measure,
accuracy on the fMRI arithmetic task increased with age at a rate
of 2 %/year and reaction time decreased with age at a rate of
−179.8 ms/year (Fig. 2, Table 1, model parameters in Supplemen-
tary Table 1).

Longitudinal changes in IPS connectivity supporting arithmetic
problem solving
The IPS has been shown to play a key role in quantity processing,
and the development of both basic numeracy17,44 as well as
complex numerical problem solving skills.37 In order to test the
prediction that IPS connectivity changes over the course of

Fig. 1 Longitudinal sampling of 30 study participants over time.
Black circles represent single fMRI scan acquisitions, and multiple
scans for one child are represented by interconnecting lines
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development, we computed IPS functional connectivity maps
derived from the arithmetic verification task relative to a number
identification control task. For each participant at each age, we
performed a whole-brain, voxelwise HLM analysis using proce-
dures described in the Methods section. Briefly, we compared four
types of models regarding different hypotheses on how age and
math ability influence longitudinal changes in IPS connectivity: (i)
the no-change base model, assuming little change in connectivity
but only individual differences in connectivity strength; (ii) the
single-factor model (age-related change or ability-related models),
assuming that the developmental trajectories of IPS connectivity is
associated with age or math ability; (iii) the two-factor model,
assuming both age and math ability associated with connectivity
change; and (iv) the interaction model, assuming interaction
between age and ability effects. Then, based on heuristic model
comparison measures, i.e., AIC (Akaike Information Criterion), we
selected the best fitting model at each voxel. Our analysis focused
on the left hIP3, the posterior most cytoarchitectonic subdivision

of the IPS, based on its extensive role in numerical cognition35,37–
41 as determined by meta-analysis of previously published tasks in
the domain (see Methods).
This analysis revealed several clusters with significant linear age-

related changes in connectivity (Fig. 3, Table 2). Left IPS
connectivity with left dorsolateral prefrontal cortex (dlPFC) and
left ventrolateral prefrontal cortex (vlPFC) was initially above
baseline (zero) and declined with age. In contrast, left IPS
connectivity with right IPS, superior parietal lobule (SPL) and
fusiform gyrus (FG) were initially below baseline and increased
with age.

Longitudinal changes in IPS connectivity occur independently of
changes in regional activation
In order to test the prediction that longitudinal changes in IPS
connectivity are related to changes in regional activation, we
analyzed longitudinal changes in regional activity among the
regions that showed longitudinal changes in left IPS connectivity,
comprising targets in right IPS, right SPL, right FG, right dlPFC, and
left vlPFC as determined in the previous section (Fig. 3, Table 2,
model parameters in Supplementary Table 2). We examined
activity changes within 6 mm region of interest (ROIs) with centers
at the peak voxels of each cluster obtained from the connectivity
analysis. Activation within these ROIs was then averaged and used
as dependent variables in HLMs (using the same model selection
described above detailed in the Methods section). Age-related
change in activation was not observed in any of these ROIs (Table
3, model parameters in Supplementary Table 3), suggesting that
longitudinal changes in IPS connectivity occur independent of
changes in regional activation. Our model fitting procedures also
allowed us to test the quality of the base (intercept only) model,
which indicated that activity in parietal regions was best described
as consistently below baseline (significant intercept, no slope).
However, PFC models did not even converge on a base model
with a significant intercept. These results suggest that longitudinal
changes in IPS connectivity occur independently of changes in
regional activation.

Relation between parietal circuit maturation and individual
differences in baseline math abilities
To examine individual differences in brain circuit maturation, we
examined the relation between standardized measures of math
ability and brain circuitry by computing individual intercepts using
NumOps scores of the WIAT-II43 and left IPS connectivity. We
conducted a whole-brain HLM analysis to determine whether

Table 1. Hierarchical linear model (HLM) fits for longitudinal changes
in behavioral measures (Fig. 2)

ACC (%) RT (ms) NumOps

Fixed effects

Intercept estimate (SE) 62.07 (13.87) 4217 (276.3) 106.0 (2.04)

Intercept t (p value) 4.48 (9.53e-05) 15.26 (<2e-16) 52.1 (<2e-16)

Age slope estimate (SE) 2.46 (1.06) −179.8 (27.0)

Age slope t (p value) 2.31 (0.027) −6.66 (2.02e-
08)

Random effects

Intercept variance 4683.1 76531 47.8

Slope variance 24.2

Residual variance 50.9 1152261.1 172.1

AIC 553.56 961.0 571.7

Values for each term included in the final model and their significance are
noted below. These include fixed-effect terms (regression coefficients and
their standard errors) and random-effect terms (intercept variance and
slope variance). Model-fitting procedures are described in the Methods
section. Bold items indicate statistically significant t statistics. Random
effects are across individuals
SE standard error, AIC Akaike information criterion, ACC Scanner task
accuracy (% correct), RT Scanner task reaction time (ms), NumOps standard
score on the numerical operations subtest of the WIAT-II

Fig. 2 Performance improvements over time. A hierarchical linear model (HLM) was used to determine changes in a reaction time and b
accuracy with age in arithmetic task performance. Dark lines show group model fits, while lighter lines show individual data from each of the
30 children
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individual NumOps scores explained additional variance in left IPS
connectivity. Since NumOps scores were stable across age (Table
1), we used an average of each individual’s NumOps score across
visits as a benchmark of each child’s math ability. We found one
cluster in the anterior right IPS and adjoining postcentral gyrus
that showed individual differences in intercept (p < 0.05, alpha <
0.05, cluster extent 448; Fig. 4, Table 4). This result indicates that,
while all children increased in bilateral IPS connectivity across age,
children with higher numerical problem solving abilities tend to
maintain a consistently higher level of anterior IPS connectivity
over development relative to lower achieving peers.

Specificity of brain-behavioral relationship to math skills
To examine the specificity of individual differences in brain circuit
maturation to math skills, we examined the relation between
standardized measures of reading ability and brain circuitry by
computing individual intercepts using Word Reading scores of the
WIAT-II43 and left IPS—right IPS connectivity. We conducted an
HLM analysis to determine whether individual Word Reading
scores explained additional variance in brain connectivity. We
found no significant effects (Table 5), suggesting age-related
increases in IPS connectivity are specifically related to math, but
not reading, skills.

Motion and its potential impact on longitudinal changes in task-
related functional connectivity
To measure head movement during fMRI scans, a rigid-body
rotation and translation algorithm was implemented. Runs were
excluded if any of the root mean square (RMS) X, Y, or Z
translations exceeded 2.5 mm or if any of the RMS roll, pitch, or
yaw rotations exceeded 0.1 degrees. This yielded a sample with
RMS translation ranging from 0.09mm to 2.55 mm, and RMS
rotation ranging from 0.07 degrees to 3.61 degrees. HLM
regressions were run to determine whether RMS translation or
RMS rotation related to age, which could confound our analysis.
RMS translation ranged from 0.09mm to 2.5 mm, and RMS
rotation ranged from 0.07 degrees to 3.61 degrees. Consistent
with previous longitudinal developmental work,20 we did find age-
related changes in participant head motion, with RMS translation
decreasing at a rate of −0.06 mm/year, and RMS rotation
decreasing at a rate of −0.09 degrees/year (model parameters in
Supplementary Table 4).
An important issue in developmental studies of brain con-

nectivity is that differences in functional connectivity levels may
arise from differences in head motion, with more motion being
associated to less long-range and more short-range connectivity,45

and these differences have confounded the results in some
published research articles,46 creating the false impression that
adults who tend to move less in the scanner than children show

Fig. 3 Longitudinal changes in IPS connectivity over time. Increases in a parietal-fusiform gyrus, b intra-parietal, and c inter-hemispheric IPS
connectivity with age. Age-related decreases in d–f parietal-prefrontal cortex connectivity with age. Results of whole-brain voxelwise
hierarchical linear modeling (HLM) showing brain regions with significant age-related changes in left IPS connectivity. Line plots show HLM
fits for target regions extracted from the connectivity analysis. Dark lines show model fits, while lighter lines show individual participant data.
IPS intraparietal sulcus, FG fusiform gyrus, SPL superior parietal lobule, dlPFC dorsolateral prefrontal cortex, vlPFC ventrolateral prefrontal
cortex

Brain circuits supporting cognitive development
C Battista et al.

4

npj Science of Learning (2018)  1 Published in partnership with The University of Queensland



more long-range resting state connectivity patterns that children
do. This is a concern for any connectivity analysis, but the current
analysis and findings differ in two important ways. First, we used
gPPI47 to estimate differences in task-related connectivity across
conditions, in contrast to resting-state connectivity. The crucial
difference being that the connectivity value for each voxel at each
time point is the result of a contrast between two task conditions.
Second, our findings are in a direction opposite to what has been
attributed to motion. We saw decreases, rather than increases, in
long-range fronto-parietal connectivity with increasing age,
indicating that our connectivity results are not due to motion
contamination as described in refs. 45,46. We reran the HLM
analyses including RMS values as a covariate, and all age-related
effects remain significant (Supplementary Tables 5 and 6).

DISCUSSION
Longitudinal investigation of functional brain circuitry provides an
important window into the mechanisms underlying children’s
cognitive development. Here, we probed the development of
brain networks involved in problem, and implemented state of the
art computational analysis via an HLM model. We examined
longitudinal changes in the context of an IS model of brain

development, and characterized developmental changes asso-
ciated with parietal brain circuits that play a critical role in
numerical problem solving. In a longitudinal cohort of children
with sampling at multiple time points and ages, we found strong
evidence for changes in IPS circuits characterized by both
increases and decreases in task-related connectivity over time.
Connectivity between left IPS and PFC decreased over time, while
connectivity within posterior brain regions, including inter-
hemispheric IPS connectivity and left IPS connectivity with VTOC,
regions implicated in quantity manipulation and numerical
symbol recognition, increased over time. Crucially, these changes
occurred in the absence of changes in regional brain activation.
Our findings provide insights into longitudinal growth trajectories
underlying maturation of functional brain circuits and elucidate
key mechanisms by which IS contributes to neurocognitive
development.

Longitudinal developmental changes in intra-parietal connectivity
Our study investigates developmental changes in parietal circuits
using a longitudinal design and functional tasks designed to
engage posterior parietal cortex. A notable finding here is that
both intra-parietal and inter-parietal cortex functional connectivity
increased over time. Specifically, both local intra-hemispheric

Table 3. Models of longitudinal change in activity in target ROIs extracted from whole-brain connectivity analysis

Regional activity

L insula L dlPFC L vlPFC R IPS R SPL R FG

Fixed effects

Intercept Est. (SE) 0.1 (0.06) 0.021 (0.0617) 0.119 (0.00673) −0.208 (0.0531) −0.254 (0.0512) −0.371 (0.0685)

Intercept t (p) 1.63 (0.116) 0.34 (0.74) 1.77 (0.0814) −3.92 (0.000209) −4.97 (2.44e-05) −5.42 (9.66e-06)

Random effects

Intercept variance 0.0537 0.0637 8.88e-15 0.000 0.01 0.0720

Residual variance 0.158 0.113 0.312 0.19 0.16 0.154

AIC 91.7 76.1 121.5 88.9 78.3 94.3

Values for each term included in the final model and their significance are noted below. These include fixed-effect terms (regression coefficients and their
standard errors) and random-effect terms (intercept variance and slope variance). Model-fitting procedures are described in the Methods section. Bold items
indicate statistically significant t statistics. Random effects are across individuals
SE standard error, AIC Akaike information criterion, L left hemisphere, R right hemisphere, dlPFC dorsolateral prefrontal cortex, vlPFC ventrolateral prefrontal
cortex, IPS intraparietal sulcus, SPL superior parietal lobule, FG fusiform gyrus

Table 2. Models of longitudinal change in IPS connectivity based on whole-brain connectivity analysis (Fig. 3)

Connectivity (gPPI)

L insula L dlPFC L vlPFC R IPS R SPL R FG

Fixed effects

Intercept Est. (SE) 2.34 (0.961) 3.55(0.797) 3.58 (0.0.971) −3.06 (0.710) −2.79 (0.610) −2.77 (0.662)

Intercept t (p) 2.43 (0.0179) 4.46 (4.12e-05) 3.61 (0.000494) −4.30 (5.42e-05) −4.58 (2.45e-05) −4.19 (8.87e-05)

Age slope Est. (SE) −0.230 (0.0951) −0.349 (0.0777) −0.380 (0.0961) 0.252 (0.0705) 0.208 (0.0602) 0.232 (0.0656)

Age slope t (p) −2.41 (0.0189) −4.42 (5.29e-05) −0.380 (0.000211) 2.72 (0.00065) 3.46 (0.00104) 3.54 (0.000779)

Random effects

Intercept variance 0.3 0.73 0.56 0.34 0.23 0.0714

Residual variance 1.79 1.52 1.35 0.66 0.68 0.888

AIC 253.7 239.81 255.15 198.48 194.0 200.7

Values for each term included in the final model and their significance are noted below. These include fixed-effect terms (regression coefficients and their
standard errors) and random-effect terms (intercept variance and slope variance). Model-fitting procedures are described in the Methods section. Bold items
indicate significant t statistics. Random effects are across individuals
Est. estimate, SE standard error, AIC Akaike information criterion, L left hemisphere, R right hemisphere, dlPFC dorsolateral prefrontal cortex, vlPFC ventrolateral
prefrontal cortex, IPS intraparietal sulcus, SPL superior parietal lobule, FG fusiform gyrus
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connectivity of the left IPS with adjoining left SPL, and inter-
hemispheric left-right IPS connectivity showed increases with
time. Critically, inter-hemispheric IPS connectivity levels were
greatest in children with the highest math ability as assessed
using standardized WIAT-II measures, highlighting the behavioral
significance of our findings. Although all children demonstrated
increases in left-right intra-parietal connectivity, those with higher
math ability maintained consistently higher levels of connectivity
across time. This finding extends previous evidence relating IPS
connectivity and numerical abilities in adults48,49 to stable inter-
individual differences in inter-hemispheric IPS interactions during
childhood. Our findings demonstrate that increased cross-talk of
parietal circuits within and across hemispheres is a key mechanism
underlying cognitive skill acquisition and the formation of
specialized functional circuits during childhood.

Longitudinal developmental changes in parietal-fusiform
connectivity
We predicted that specialized processing of symbolic quantity and
visual number form34 in the context of symbolic mental arithmetic
would be reflected in increased connectivity between posterior
dorsal–ventral pathways linking IPS and VTOC. Consistent with this
prediction, we found that left IPS connectivity with VTOC
increased over time.
This finding is noteworthy because the IPS–FG circuit is thought

to be important for integrating visual number form processing in
the FG with quantity processing in the IPS.35 Our results highlight
the contribution of a previously neglected dorsal–ventral stream
circuit to the development of numerical cognition, and add to the

growing body of evidence for the importance of the FG and its
interactions with the IPS.50–53 This is in line with previous work
demonstrating the maturation of representations of arithmetic
problems in both IPS and VTOC in adults relative to children.54 Our
finding of IPS–FG task-related effective connectivity is also
consistent with previous work demonstrating that IPS and FG
structural integrity and intrinsic functional connectivity forecast
growth in math skills from childhood to late childhood.55 The FG
encompasses the visual word form area (VWFA), and recent
studies suggest this VTOC subdivision is intrisically coupled with
the IPS in both adults and children.56 It has been argued that the
VWFA may not be used specifically or even predominantly for
language, but rather as a general use region with processing
properties that are particularly relevant to learning symbols of all
types.57 Our findings provide evidence that this FG–IPS circuit
supports the integration of visual number form processing with
the parietal quantity processing system, and crucially, that
effective connectivity of this circuit matures over time in parallel
with problem solving abilities.

Longitudinal developmental changes in parietal–prefrontal
connectivity
We predicted that increased specialization of posterior parietal
circuits would be accompanied by a decreased need for
interactions with PFC. Consistent with this prediction, we found
evidence for significant decreases in IPS connectivity with multiple
PFC regions including the left insula, vlPFC, and dlPFC. These
fronto–parietal circuits are known to play an important role in
allocating resources for cognitive control and working memory

Fig. 4 Inter-hemispheric IPS connectivity is related to individual differences in mathematical ability. Higher math ability was associated with
higher inter-hemispheric IPS connectivity. Line plots show HLM fits for target regions extracted from the connectivity analysis. Colored lines
show individual participant data, with light blue to purple colors indicating individual differences (low to high) in mathematical ability as
measured by the NumOps subtest of the WIAT-II. Black lines show models for a hypothetical participant with NumOps score of 105 (which was
roughly the mean NumOps score in the studied sample)
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during a wide range of cognitive and learning paradigms,
including mental arithmetic.35 Our results suggest that, with
increased experience, IPS regions involved in arithmetic proces-
sing rely less on interactions with working memory and cognitive
control systems, as these tasks are becoming less demanding with
age. Consistent with this view, greater IPS connectivity with the
dlPFC, vlPFC and insula has previously been found in children with
math disabilities.58 Notably, in contrast to the findings from the
present longitudinal study spanning 6 years, a cross-sectional
study of 2nd and 3rd grade children (ages 7–8 to 8–9) found no
changes in IPS connectivity over the period of 1 year.59 Thus, the
characterization of longitudinal growth trajectories over a longer
time interval are necessary for detecting selective weakening of
parietal-prefrontal circuits with age.

Mechanisms of IS of functional circuits and cognitive development
The present study provides insights into the mechanisms by
which IS of functional brain circuits contributes to children’s
cognitive development. We summarize and synthesize key
features based on the above findings. First, IS is characterized
by selective strengthening of some functional brain circuits, and
corresponding weakening of others. Second, IS is characterized by
selective increases in local intra-hemisphere and inter-hemisphere
connectivity over time in posterior brain regions known to be
important for task-related information processing. In the present
study, this was illustrated by increases in IPS connectivity with
adjacent parietal cortex, as well as changes in inter-hemispheric
IPS connectivity. Third, interactions between dorsal and ventral
visual streams strengthen over time, reflecting tighter integration
of different components of task-related information processing.
We found evidence for increased coupling of the parietal quantity
representation system with the ventral visual numerical symbol
recognition system over time. Fourth, engagement of
fronto–parietal circuits decreases over time during childhood,
pointing to reduced need for specialized posterior brain systems
to access PFC. Together, these findings provide direct evidence
from a longitudinal sample for refinement of local parietal circuits,
tighter integration of dorsal–ventral visual streams and reduced

dependence on PFC as circuit mechanisms supporting neurocog-
nitive development.
A strong interpretation of the IS model would predict that

connectivity changes would be associated with corresponding
increases or decreases in activation in interconnected brain areas.
However, we found no evidence of this; none of the IPS
connectivity targets in PPC, PFC or FG showed decreases, or
increases in neural activity over time. Precisely how changes in
functional circuits contribute to regional specialization and fine-
tuned representations remains a significant challenge for future
studies. It is possible that, in general, there may not be a tight link
between changes in any one functional brain circuit and selective
changes in regional task-related activation. An alternative
hypothesis is that changes in local neuronal circuit properties
(e.g., lateral inhibition) alter regional representations60,61 and long-
range functional connectivity.60,61 Testing these hypotheses will
require additional quantitative formalization of IS and appropriate
experiments with longitudinal designs as used here.
Our findings also suggest that the overall framing of IS models

needs to be refined to incorporate recent observations that
multimodal association cortices, such as the IPS, subserve multiple
cognitive functions. Crucially, the functions of a specific brain
region depend on its context-dependent interactions with
task-relevant brain regions.35 For example, although the numer-
ical cognition literature has focused on the role of the IPS in
quantity processing and manipulation, this same region also has a
shared, flexible neural architecture for visuospatial representations
and short-term memory.61,62 This is problematic for current
framing of IS models which places an emphasis on regional
specialization of domain-specific functions. We suggest that such
specializations are more likely to emerge from dynamic changes i
n inter-regional connectivity with both increases and decreases
in specific functional circuits, and their inter-relatedness, con-
tributing to the development and maturation of cognitive skills
over time.
Given the anterior to posterior shift observed in our study, and

the relatively slow maturation of white matter pathways linking
the PFC with parietal cortex and VTOC, we suggest that the
cortical specialization observed in our study is primarily driven by

Table 5. Model of individual differences in reading ability and
longitudinal change in L-R IPS connectivity

Connectivity (gPPI)

R IPS

Fixed effects

Intercept estimate (SE) −2.69 (1.75)

Intercept t (p) −1.54 (0.13)

Age slope estimate (SE) 0.11 (0.07)

Age slope t (p) 1.60 (0.12)

Word reading estimate (SE) 0.01 (0.01)

Word reading t (p) 0.87 (0.39)

Random effects

Intercept variance 0.23

Residual variance 0.86

AIC 210.2

Values for each term included in the final model and their significance are
noted below. These include fixed-effect terms (regression coefficients and
their standard errors) and random-effect terms (intercept variance and
slope variance). Model-fitting procedures are described in the Methods
section. Random effects are across individuals
gPPI generalized form of psychophysiological interaction, SE standard error,
AIC Akaike information criterion, R right hemisphere, IPS intraparietal sulcus

Table 4. Model of individual differences math ability and longitudinal
change in L-R IPS connectivity (Fig. 4)

Connectivity (gPPI)

R IPS

Fixed effects

Intercept estimate (SE) −9.26 (3.14)

Intercept t (p) −2.95 (0.0065)

Age slope estimate (SE) 0.11 (0.07)

Age slope t (p) 1.71 (0.092)

NumOps estimate (SE) 0.07 (0.03)

NumOps t (p) 2.61 (0.015)

Random effects

Intercept variance 0.13

Residual variance 0.87

AIC 205.6

Values for each term included in the final model and their significance are
noted below. These include fixed-effect terms (regression coefficients and
their standard errors) and random-effect terms (intercept variance and
slope variance). Model-fitting procedures are described in the Methods
section. Bold items indicate significant t statistics. Random effects are
across individuals
SE standard error, AIC Akaike information criterion, R right hemisphere, IPS
intraparietal sulcus
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learning and functional brain plasticity rather than maturation of
structural connectivity. Finally, it is interesting to consider whether
the type of learning and brain plasticity demonstrated here could
occur on a shorter time scale. For example, would one capture
similar changes in learning in a training study over hours, days or
weeks? In a previous study, we found that, in typically developing
children, short-term training over a course of 8 weeks on relatively
simple problems, such as those used here, changes in brain
activation were minimal and entirely restricted to the hippocam-
pus.63 In contrast, children with dyscalculia showed marked
reductions in brain responses in multiple prefrontal, parietal and
VTOC regions, resulting in normalization of brain activity to levels
similar to those seen in typically developing children. Thus, it
appears that long-term repeated co-activation of relevant circuitry
or training on more complex problems would be required to
observe the patterns of normative changes observed here.

CONCLUSION
In the current study we used a longitudinal design with multi-
time point fMRI data and HLMs to probe the developmental
trajectory of functional circuits involved in mathematical skill
acquisition. Our study contributes new insights into how
functional circuits linking brain systems involved in quantity
manipulation, visual object recognition, and cognitive control
change over time. We elucidated how dynamic reconfiguration of
parietal functional circuits supports the development of mathe-
matical skills over the course of childhood, characterized by
strengthening of connections within posterior parietal cortex and
between parietal cortex and ventral temporal occipital cortex,
accompanied by decoupling of posterior parietal cortex from PFC.
Our findings provide insights into brain mechanisms underlying IS
and identify developmental shifts in connectivity levels from
anterior to posterior brain systems as the strongest feature of
longitudinal developmental change in individual children over
time. More broadly, our study advances fundamental under-
standing of the circuit mechanisms by which complex cognitive
abilities emerge over development.

METHODS
Participants
We recruited children between the ages of 7 and 14 from a wide range of
schools in the San Francisco Bay Area by directly mailing schools, as well as
posting at libraries and elsewhere in the community. Participants were not
diagnosed with any psychiatric illness, nor were they taking any
medications. All protocols in the study were conducted in accordance
with the American Psychological Association “Ethical Principles of
Psychologists and Code of Conduct,” and approved by the Stanford
University Institutional Review Board. Prior to participation, informed
written consent was obtained from the legal guardian of each child, and
participants independently assented to study participation. Forty-nine
right-handed children who were scanned on a minimum of two time
points, separated by a year, were included in the study. Fourteen
participants were excluded because of excessive motion (see “Head
motion and its potential impact” for details), and five participants were
excluded because of MRI scanning artifacts, resulting in a final sample of N
= 30 children with behavioral, cognitive, and functional brain imaging data
for 2–4 time points per child (Fig. 1). Specifically, 23 children had two visits,
five children had three visits, and two children had four visits, resulting in a
total of 69 time points in the sample.

Standardized measures of math ability
We assessed mathematical abilities with the nationally standardized
achievement battery WIAT-II.43 It includes measures of academic skills and
problem-solving abilities, and is normed by grade and academic season
(i.e., summer, fall or spring). The NumOps subtest measures number
writing and identification, number production, rote counting, and simple
calculations (i.e., addition, subtraction, multiplication, division) via paper-

and-pencil response. Example problems for 2nd and 3rd graders include: 4
− 2 = ___ (horizontal presentation) and 37 + 54 (vertical presentation).

fMRI data acquisition
fMRI scans were run at the Stanford University Lucas Center using a
custom-build head coil and a 3 T GE Signa scanner (General Electric,
Milwaukee, WI). A comfortable custom-built restraint was used to minimize
head movement during the scans. Using a T2* weighted gradient echo
spiral in-out pulse sequence, 29 axial slices covering the whole brain (4.0
mm thickness, 0.5 mm skip) were imaged parallel to the AC–PC line.64 The
following parameters were implemented: TR = 2 s, TE = 30 ms, flip angle =
80°, 1 interleave, FOV = 20 cm, matrix size = 64 × 64, in-plane spatial
resolution = 3.125mm. Before acquiring fMRI scans, we used an automated
high-order shimming method based on spiral acquisitions to reduce
blurring and signal loss from field inhomogeneity.65

fMRI arithmetic task
The fMRI task had three conditions: (1) addition, (2) number identification
and (3) passive fixation. During the addition condition, participants
indicated, via button box, whether the answer was correct (e.g., 2 + 3 = 5)
or incorrect (e.g., 2 + 3 = 6) in an addition problem with two addends. One
operand ranged from 1 to 5, the other from 1 to 9, and answers were
correct in 50% of the trials. Tie problems (e.g., 4 + 4 = 8) were excluded,
and in incorrect trials, answers deviated by ±1 or ±2 from the correct
answer.66 One of the addends was ‘1’ in half of the addition blocks (e.g., 5
+ 1 = 6). In the number identification condition, irrelevant keyboard
characters were used in place of arithmetic symbols (e.g., “2 o 3 @ 5”).
Children indicated whether “5” was among the presented digits. For our
analyses, we contrasted the Arithmetic condition with the control
Number identification condition. This allowed us to isolate the visual and
quantity processing demands that are unique to arithmetic, while
removing common sensorimotor activation resulting from general task
demands – a critical consideration when testing the predications of the IS
framework.1

To optimize fMRI signal detection and the task-related functional
connectivity analysis, stimuli were presented in a block design.67 The
experimental run lasted for a total of 6 min 36 s. Stimuli were on display
for 5 s, and the inter-trial interval was 500ms long. The Addition condition
consisted of 36 trials, and the number identification condition consisted
of 18 trials. Each of four blocks lasted either 22 or 27.5 s, consisting of
either four or five trials. Block ordering was randomized across subjects,
and the following constraints were in imposed: all conditions were
presented in every set of four blocks, blocks of the addition condition
were always separated by a block of either number identification or
passive fixation, and ordering of addition and non-addition conditions
were equally likely.

fMRI preprocessing
Statistical Parametric Mapping (SPM8; http://www.fil.ion.ucl.ac.uk/spm/)
was used to analyze fMRI data. To allow for T1 equilibration, the first five
volumes were excluded. During reconstruction, we applied a linear shim
correction for each slice separately.64 To correct for excessive movement,
ArtRepair software was implemented.68 Images were realigned to correct
for movement, smoothed with a 4mm full-width half-maximum (FWHM)
Gaussian kernel, and motion adjusted. Then, any deviant volumes that
resulted from spikes in the global signal or sharp movement were
interpolated to immediately adjacent scans, with a maximum of 10% of
scan volumes being interpolated. Images were then corrected for errors in
slice-timing, spatially normalized to standard MNI space, resampled to 2
mm isotropic voxels, and smoothed with a 4.5 mm FWHM Gaussian
kernel.59 The two-step sequence of smoothing with a (1) 4-mm FWHM
Gaussian kernel (implemented by the ArtRepair pipeline) and then a (2)
4.5-mm FWHM Gaussian kernel approximates a total smoothing of 6-mm
FWHM Gaussian kernel (total smoothing equals the square root of the sum
of the squares of individual smoothing steps).

Individual subject analyses
Activation. We identified task-related brain activation by implementing
the general linear model in SPM8. Volumes that were interpolated during
preprocessing were flagged and de-weighted during the individual subject
analyses. To account for voxel-wise latency differences in hemodynamic
response, we modeled brain activity related to each task condition using
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boxcar functions that corresponded to the block length and convolved
with a canonical hemodynamic response function and a temporal
dispersion derivative. A 0.5 cycle/min high-pass filter was used to remove
low-frequency drifts at each voxel. The fMRI time series was modeled as a
first-degree autoregressive process to account for serial correlations. Voxel-
wise effect sizes from the contrast of the Arithmetic block with the Number
identification block were generated for each participant.

Connectivity. The “Generalized Form of Context-Dependent Psychophy-
siological Interactions” SPM toolbox was used to implement a generalized
form of psychophysiological interaction (gPPI).47 gPPI allows for condition-
specific estimation of task-dependent functional connectivity in multiple-
condition experiments. Compared with standard PPI implementation in
SPM, gPPI is more powerful, as evidenced by both simulation and empirical
studies. It is also well suited for functional connectivity analysis of block
design experiments,63 such as those featured in the current investigation.69

Similar to the activation step, voxel-wise effect sizes from the contrast of
the Arithmetic condition with the Number identification condition were
generated for each participant.

Group analyses
Hierarchical linear modeling. Growth rates in both activation and
connectivity were examined using HLM with the lme4 package available
in R.70 HLM uses both multilevel fixed and random-effects analyses in order
to account for within-subject nested data. It also allows for the modeling of
data with varying number of time points acquired at uneven time
intervals.42 Age was modeled as a fixed effect, while individual participants
were modeled as random effects. The R package lmerTest71 was used for
additional significance testing of models. A linear growth model with age
as the growth factor and random effects for both slope and intercept is
denoted for Level 1 as follows:

outcometi ¼ π0i þ π1iageti þ eti

eti � N 0; σ2
� �

and for Level 2:

π0i ¼ β00 þ r0i

π1i ¼ β10 þ r1i

In this model, β00 is the grand mean of the outcome variable at the
sample’s mean age, β10 is the grand mean slope of the trajectory, and
r0i and r1i are the random effects terms for the intercept and the slope,
respectively. Estimates of each term are generated for each subject.
Individual differences in outcome variables at the sample’s mean
age are indicated by significant variability in r0i, and individual differences
in slopes of outcome variables are indicated by significant differences
in r1i.

To search for growth trends in our brain and behavioral variables, we
implemented the following procedure for each outcome variable:

1. Base model. Construct a base model with a random effects term to
represent subject level variance in intercept (r0i), but no growth. This
serves as a basis for comparison with expanded models.

outcometi ¼ β00 þ r0i þ eti

2. Single-factor models. Add a fixed effect term to represent age-related
change (β10) or arithmetic ability (scores on Numerical Operations
subtest), and compare the updated models to base model using χ2

test and Aikake information criterion (AIC). The significance of β00 and
β10 was determined by using a t-test.71

outcometi ¼ β00 þ r0i þ β10ð Þageti þ eti

outcometi ¼ β00 þ r0i þ β10ð Þnumopsti þ eti

3. Two-factor model. Expand model to include both age-related and
ability-related fixed effects and compare to the best-fitting model of
previous models (amongst base model and single-factor models)
using χ2 and AIC.

outcometi ¼ β00 þ r0ið Þ þ β10ð Þageti þ β20ð Þnumopsti þ eti

4. Interaction model. Expand model to include the interaction between
age and math ability into the model, and compare to the best-fitting
model from Steps 1–3.

outcometi ¼ β00 þ r0ið Þ þ β10ð Þageti þ β20ð Þnumopsti
þ β30ð Þ age�tinumopsti þ eti

When HLM was applied to whole-brain data (as in the case of
connectivity analysis), the above procedure was used for each voxel, and
χ2 tests were used to produce significance maps. Then, standard cluster-
correction techniques based on Monte–Carlo simulations72 were used,
with voxel-wise thresholds at p < 0.01 and a minimum cluster size of 128
voxels corresponding to a family-wise error correction for multiple
comparisons (p < 0.01). After significant clusters were extracted, peak
values from each cluster were used to create 6mm spherical ROIs.
Activation and connectivity values were extracted from these ROIs and
fitted using the above procedure, and displayed in tables and figures.

IPS seed for connectivity analysis
The IPS consists of three primary cytoarchitectonically defined subdivi-
sions, hIP1, hIP2 and hIP3,73–75 each with different profiles of brain
activation and connectivity.50,76 We focused our analysis on hIP3, the most
posterior subdivision, based on meta-analysis of previous task-related fMRI
studies in the domain of numerical cognition. The meta-analysis was
performed using Neurosynth77 and the search term ‘arithmetic’; to increase
relevance to our longitudinal developmental study, the search was
restricted to studies involving children and adolescents. The resulting
activation map showed maximal overlap with cytoarchitectonically defined
subdivision hIP3 of the IPS (Fig. 5).

Data availability
The datasets analyzed during the current study are available from the
corresponding author on reasonable request.
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